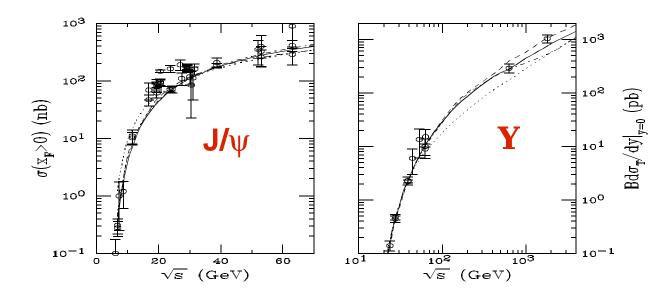


Lomonosov Moscow State University

Sergey Petrushanko

Heavy Flavours in Heavy-ion Collisions in CMS Experiment at LHC

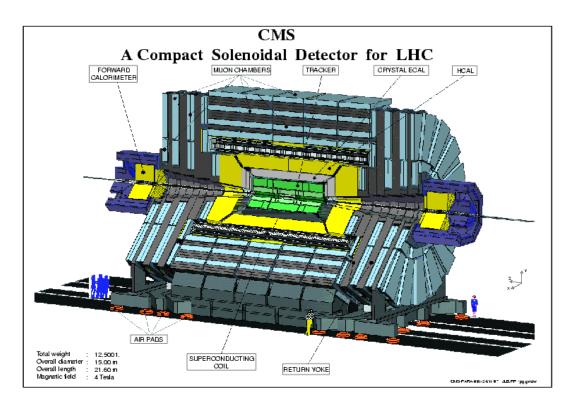

for CMS collaboration

From SPS and RHIC to LHC

Increase energy
$$\sqrt{s_{_{NN}}}$$
 = 17-200 GeV \rightarrow 5500 GeV

- Plasma hotter and longer lived than at RHIC
- Unprecedented gluon densities
- Access to lower x, higher Q²
- Availability of new probes

Quarkonia
(J/ψ, ψ'; Y,Y',Y")
large cross section


↓
high statistics

Different melting for Y,Y',Y"

Large cross section for heavy quarks (b,c). Observation of medium induced energy loss in high mass dimuon spectrum and secondary J/ψ .

CMS detector

Magnetic field: 4 Tesla

- Silicon Tracker|η| < 2.4
- ◆ Electromagnetic Calorimeter|η| < 3.0
 - Hadron Calorimeter

barrel and endcap

 $|\eta| < 3.0$

with HF-calorimeter up to

 $|\eta| < 5.2$

Muon Chambers

 $|\eta| < 2.4$

+ CASTOR detector 5.3 < |η| < 6.4

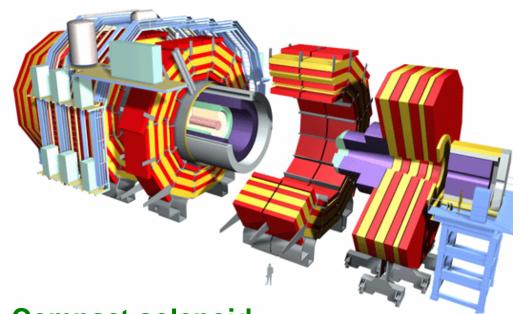
+ Zero-degree calorimeter + TOTEM

CMS as a detector for Heavy Ion Physics

Tracker

- wide rapidity range |η| < 2.4
- excellent momentum resolution:
 ∆p/p < 1-2% for p_T less than 100 GeV

Calorimeters


- fine grained (up to $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$)
- high energy resolution
- hermetic coverage
 up to |η| < 5.2,
 up to |η| < 6.4 (using CASTOR)

Muon stations

• wide rapidity range |η| < 2.4</p>

DAQ and Trigger

- high rate capability for AA, pA, pp
- inspection of fully built events at high level trigger of the most of HI events.

Compact solenoid

strong magnetic field (4 Tesla)

Signal and background simulation

Signal events:

- Y, Y', Y'', J/ ψ , ψ ' $\rightarrow \mu^{+}\mu^{-}$ are generated according to calculation by R. Vogt
- **▶** $Z^0 \rightarrow \mu^+ \mu^-$ is generated with PYTHIA
- **Parameters** B → μ +X, B → J/ ψ +X are generated with PYTHIA

$$\sigma_{AA} = A^{2\alpha} \sigma_{pp}$$
 with $\alpha = 1$ for Z^0
$$\alpha = 0.95 \text{ for Y,Y',Y''}$$

$$\alpha = 0.9 \text{ for J/}\psi$$

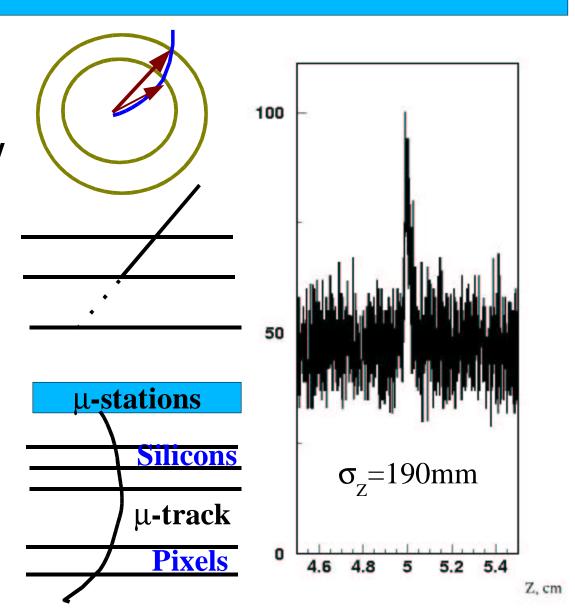
Background events are generated with HIJING with high and low multiplicity assumptions.

High multiplicity assumption: $dN_{ch}/d\eta = 5000$ for central PbPb event Low multiplicity assumption: $dN_{ch}/d\eta = 2500$ for central PbPb event

Signal events are combined with background AA events.

μ⁺μ⁻ reconstruction algorithm

Primary vertex determination


- select pairs of pixel hits with $\Delta \phi$ giving 0.5 < p_T< 5 GeV
- extrapolate each pair in RZ to the beam line

Track finding

- start from track candidate in muon stations
- extrapolate inwards from plane to plane using vertex constraints

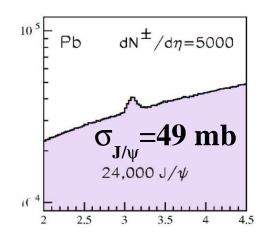
Track selection by cuts

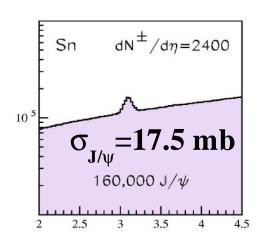
- fit quality (χ²)
- vertex constraint

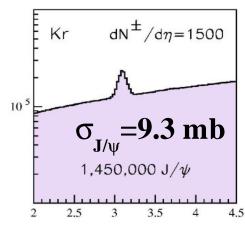
J/ ψ spectra for different nuclei, high multiplicity assumption

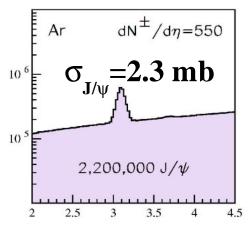
For Pb+Pb at integrated luminosity 0.5 nb⁻¹ Combinatorial background:

π /K decays into μ


cc and bb production pp cross-section $\sigma_{cc} = 6.3 \text{mb}, \ \sigma_{bb} = 0.19 \text{mb}$


Mixed sources, i.e.


1 μ from π /K + 1 μ from J/ ψ


1 μ from b/c + 1 μ from π /K

No trigger efficiency but p_τ">3.5 GeV/c

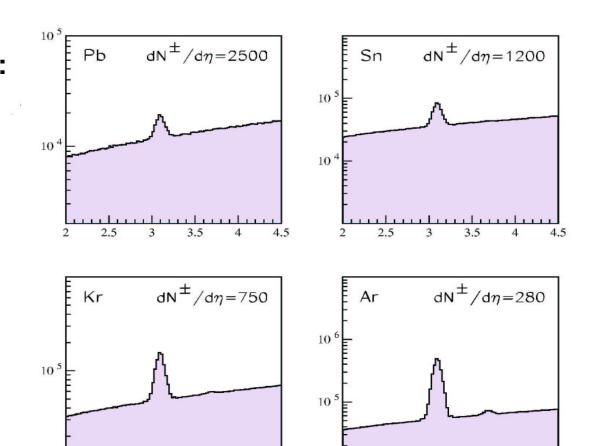
Opposite sign dimuon invariant mass, GeV/c²

Full GEANT simulation for reconstruction efficiency in tracker and dimuon mass resolution. Mass resolution ~50 MeV/c².

J/ψ spectra for different nuclei, low multiplicity assumption

For Pb+Pb at integrated luminosity 0.5 nb⁻¹ Combinatorial background:

π /K decays into μ


cc and bb production pp cross-section $\sigma_{cc} = 6.3 \text{mb}, \ \sigma_{bb} = 0.19 \text{mb}$

Mixed sources, i.e.

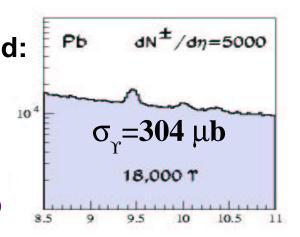
1 μ from π /K + 1 μ from J/ ψ

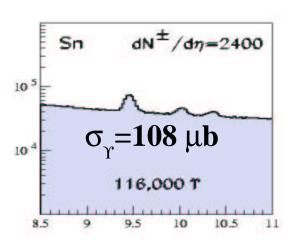
1 μ from b/c + 1 μ from π /K

No trigger efficiency but p_τ">3.5 GeV/c

Opposite sign dimuon invariant mass, GeV/c²

Full GEANT simulation for reconstruction efficiency in tracker and dimuon mass resolution. Mass resolution ~50 MeV/c².

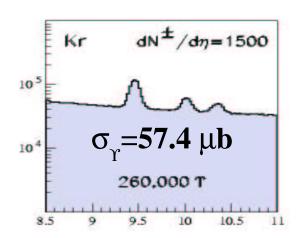


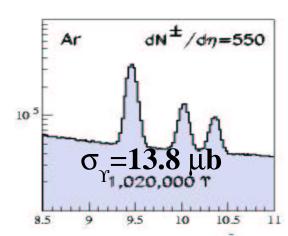

Y spectra for different nuclei, high multiplicity assumption

For Pb+Pb at integrated luminosity 0.5 nb⁻¹ Combinatorial background:

π /K decays into μ

cc and bb production pp cross-section $\sigma_{co} = 6.3$ mb, $\sigma_{bb} = 0.19$ mb




Mixed sources, i.e.

1 μ from π /K + 1 μ from J/ ψ

1 μ from b/c + 1 μ from π /K

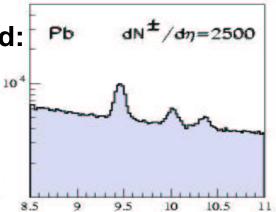
No trigger efficiency but p_τ">3.5 GeV/c

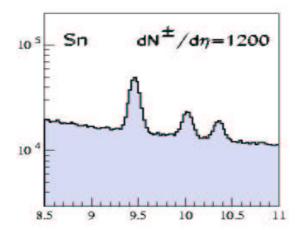
Opposite sign dimuon invariant mass, GeV/c²

Full GEANT simulation for reconstruction efficiency in tracker and dimuon mass resolution. Mass resolution ~50 MeV/c².

Y spectra for different nuclei, low multiplicity assumption

For Pb+Pb at integrated

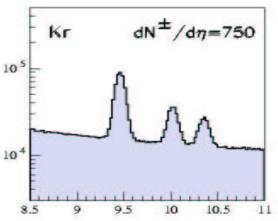

luminosity 0.5 nb⁻¹

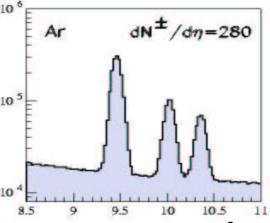

Combinatorial background:

π /K decays into μ

cc and bb production pp cross-section

$$\sigma_{cc} = 6.3 \text{mb}, \ \sigma_{bb} = 0.19 \text{mb}$$




Mixed sources, i.e.

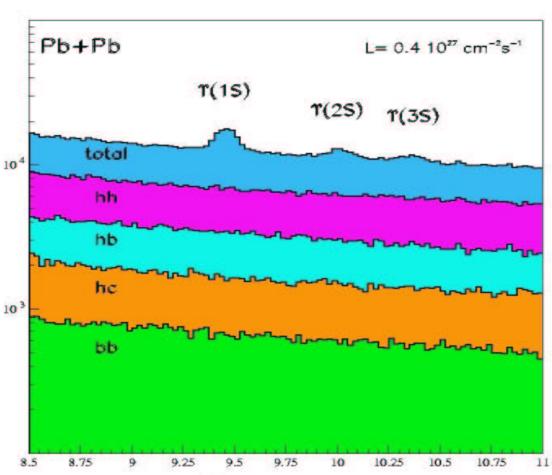
1 μ from π /K + 1 μ from J/ ψ

1 μ from b/c + 1 μ from π /K

No trigger efficiency but $p_{\tau}^{\mu}>3.5$ GeV/c

Opposite sign dimuon invariant mass, GeV/c²

Full GEANT simulation for reconstruction efficiency in tracker and dimuon mass resolution. Mass resolution ~50 MeV/c².

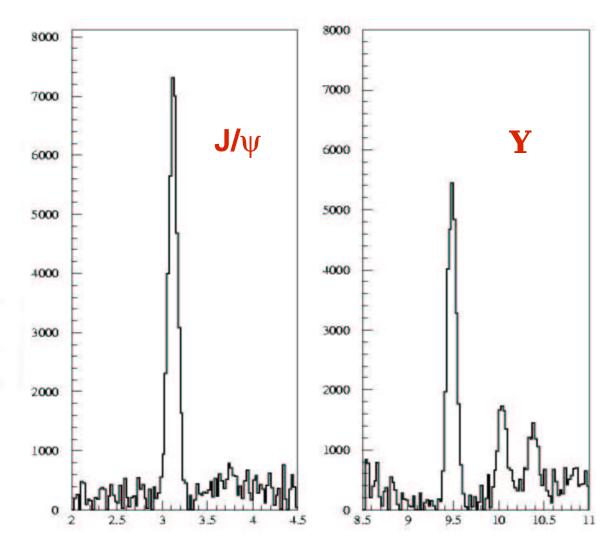

Background composition in Y mass range

For Pb+Pb at integrated luminosity 0.5 nb⁻¹ high multiplicity assumption

hh	π/ K	decay	/S	into	μ

 $\begin{array}{cc} c\overline{c} & c \text{ decays into } \mu \\ \text{bb} & \text{b decays into } \mu \end{array}$

hb,hc 1 μ from b/c 1 μ from π /K


Opposite sign dimuon invariant mass, GeV/c²

J/ψ, Y spectra for PbPb after background subtraction

After subtraction of uncorrelated background using like-sign dimuons

$$S = OS - 2\sqrt{(N^{++}N^{--})}$$

Opposite sign dimuon invariant mass, GeV/c²

Signal/Background ratios (high multiplicity - low multiplicity)

		PbPb	SnSn	KrKr	ArAr
S/B	J /ψ	0.2 - 0.5	0.4 - 1.1	0.7 - 1.8	2.0 - 6.8
	Υ	0.4 - 0.9	0.7 - 1.9	1.5 - 4.3	5.3 - 15.6
S / sqrt(S+B)	Υ	69 - 93	220 - 276	396 - 460	925 - 978
	Υ'	24 - 38	84 - 123	165 - 218	447 - 512
	Υ"	16 - 26	55 - 86	113 - 157	325 - 391

Mass window: $M_{res} \pm 50 \text{ MeV} / c^2$

CMS muon trigger for heavy ions

The heavy ion Level 1 (L1) muon trigger is a single muon with the lowest p_{τ} cut in full region $|\eta|$ <2.4.

in barrel 0.< $|\eta|$ <1.5: p_{τ} min = 4 GeV/c (trigger efficiency=90%)

p_{min} = 3.5 GeV/c (trigger efficiency=80%)

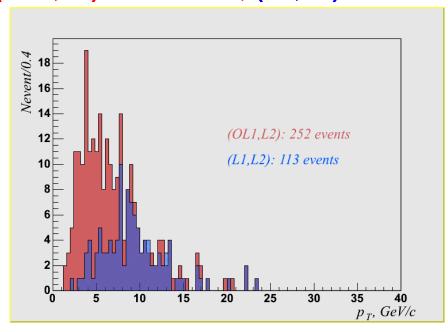
in endcap 1.5< $|\eta|$ <2.4: p_{min} from 3.5 GeV/c to 1.5 GeV/c

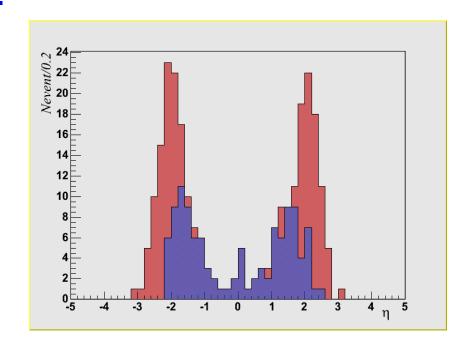
The second muon is added at Level 2 (L2).

This L1 baseline allows use different combination of patterns from different CMS muon chambers detectors: Drift Tube, Cathode Strip Chambers, Resistive Plate Chambers (schema OR). L2 is done on the on-line farm.

The relatively low luminosity of heavy ion beams allows this less restrictive L1 trigger.

J/ ψ and Y are generated according inclusive (η , p_T) distributions for central Pb+Pb and are forced to decay into $\mu^{+}\mu^{-}$ within GEANT simulation.


J/ ψ triggering (p_T and η dependence)


Two different optimization at Level 1:

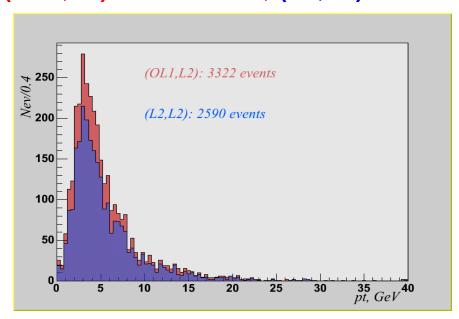
L1 optimized for high luminosity pp
OL1 (low quality muon candidate) proposed for HI

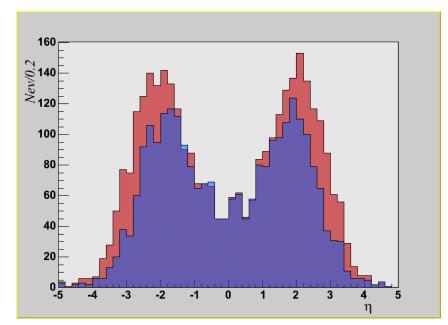
Trigger condition: two opposite sign candidates at Level 1 or two opposite sign candidates at Level 2

(OL1,L2) 252 events, (L1,L2) 113 events.

Trigger efficiency: 0.97% (OL1-L2 chain) 0.44% (L1-L2 chain)

26000 J/ψ were generated


Y triggering (p_{τ} and η dependence)

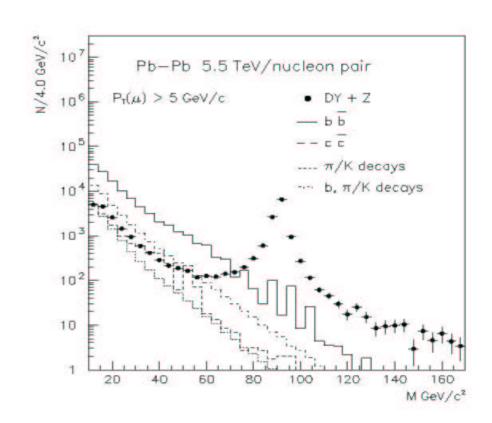

Two different optimization at Level 1:

L1 optimized for high luminosity pp
OL1 (low quality muon candidate) proposed for HI

Trigger condition: two opposite sign candidates at Level 1 or two opposite sign candidates at Level 2

(OL1,L2) 3322 events, (L1,L2) 2590 events.

Trigger efficiency: 21% (OL1-L2 chain) 16.5% (L1-L2 chain)


15700 Y were generated

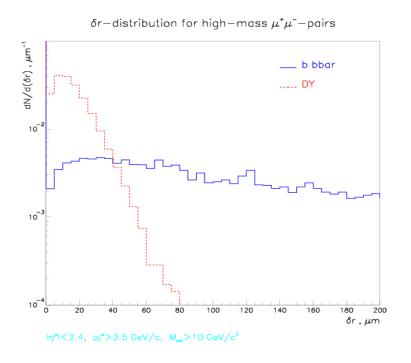
$Z^0 \rightarrow \mu^{\dagger} \mu^{-}$ detection at CMS

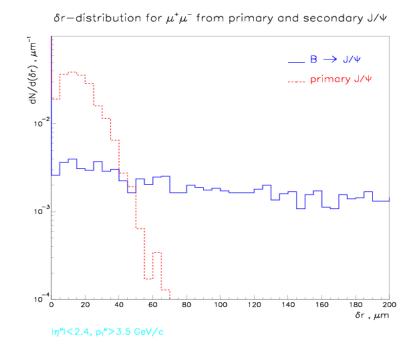
$$\sigma_{AA} = A^{2\alpha} \sigma_{pp}$$
 with $\alpha = 1$

 σ_{pp} was taken from PYTHIA, correction k=2 for cc and bb and k=1.3-1.5 for Z^0 , W, tt

HIJING was used for AA event

The expected number of $Z^0 \rightarrow \mu^+\mu^-$: ~10⁴/1.3x10⁶ s of Pb-Pb running at L=10²⁷cm⁻²s⁻¹.


Z⁰ can be measured with muon system alone and with muon+tracker systems.



Heavy-quark b,c $\rightarrow \mu$ /J/ ψ +X Secondary vertex finding and correlated background rejection

$$B\overline{B} \rightarrow \mu^{+}\mu^{-}$$

$$\textbf{BB} \to \textbf{J/}\psi \to \mu^{\text{+}}\mu^{\text{-}}$$

dr is transverse distance between the intersection points with the beam line (points with minimal distance to the beam axis) belonging two different muon tracks.

I.P.Lokhtin and A.M.Snigirev, J.Phys. C27 (2001) 2365; CMS Note 2001/008 Sergey Petrushanko, SQM'04, Cape Town, September 15-20, 2004

Summary

CMS detector at LHC is well suited for heavy flavour studies.

- 1) Quarkonia detection.
- States can be well separated.
- The number of events/month will be enough to carry out correlation studies (p_{τ} , event centrality ...).
 - Significances for Y are between 70 for Pb+Pb and 1000 for Ar+Ar.
 - 2) Heavy quarks detection ($b\bar{b}$, $c\bar{c}$).
- Semi-leptonic bb-decays will be the main source of dimuons at high-mass domain and can be used to study medium-induced energy loss of b-quarks.
- Dimuon spectrum from BB decay can be separated from that of Drell-Yan with secondary vertex reconstruction. Also primary and secondary J/ψ can be separated using vertex information.